4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions

نویسندگان

  • J. Wiedenmann
  • E. Bocquillon
  • R. S. Deacon
  • S. Hartinger
  • O. Herrmann
  • T. M. Klapwijk
  • L. Maier
  • C. Ames
  • C. Brüne
  • C. Gould
  • A. Oiwa
  • K. Ishibashi
  • S. Tarucha
  • H. Buhmann
  • L. W. Molenkamp
چکیده

The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4p-periodic Josephson supercurrent in HgTe-based topological Josephson junctions

The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p...

متن کامل

Induced superconductivity in the three-dimensional topological insulator HgTe.

A strained and undoped HgTe layer is a three-dimensional topological insulator, in which electronic transport occurs dominantly through its surface states. In this Letter, we present transport measurements on HgTe-based Josephson junctions with Nb as a superconductor. Although the Nb-HgTe interfaces have a low transparency, we observe a strong zero-bias anomaly in the differential resistance me...

متن کامل

Revealing topological superconductivity in extended quantum spin Hall Josephson junctions.

Quantum spin Hall-superconductor hybrids are promising sources of topological superconductivity and Majorana modes, particularly given recent progress on HgTe and InAs/GaSb. We propose a new method of revealing topological superconductivity in extended quantum spin Hall Josephson junctions supporting "fractional Josephson currents." Specifically, we show that as one threads magnetic flux betwee...

متن کامل

Unconventional Josephson effect in hybrid superconductor-topological insulator devices.

We report on transport properties of Josephson junctions in hybrid superconducting-topological insulator devices, which show two striking departures from the common Josephson junction behavior: a characteristic energy that scales inversely with the width of the junction, and a low characteristic magnetic field for suppressing supercurrent. To explain these effects, we propose a phenomenological...

متن کامل

Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm.

In this Letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two-dimensional helical metals such as on a topological insulator surface state. We show that, contrary to the usual superconducting-normal metal-superconducting junctions, the suppression of the supercurrent in the superconducting-helical metal-superconducting junction is mainly due t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016